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Facial expression recognition plays an important role in research on human–computer interaction. The
common facial expressions are mixtures of six basic emotions: anger, disgust, fear, happiness, sadness,
and surprise. The current study, however, focused on a single basic emotion on the basis of physiological
signals. We proposed emotion distribution learning (EDL) based on surface electromyography (sEMG) for
predicting the intensities of basic emotions. We recorded the sEMG signals from the depressor supercilii,
zygomaticus major, frontalis medial, and depressor anguli oris muscles. Six features were extracted in the
frequency, time, time–frequency, and entropy domains. Principal component analysis (PCA) was used to
select the most representative features for prediction. The key idea of EDL is to learn a function that maps
the PCA-selected features to the facial expression distributions such that the special description degrees
of all basic emotions for an emotion can be learned by EDL. Simultaneously, Jeffrey’s divergence consid-
ered the relationship between different basic emotions. The performance of EDL was compared with that
of multilabel learning based on PCA-selected features. Predicted results were measured by six indices,
which could reflect the distance or similarity degree between distributions. We conducted an experiment
on six different emotion distributions. Experimental results show that the EDL can predict the facial
expression distribution more accurately than the other methods.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, facial expression recognition has become a pop-
ular research topic in human–computer interaction (HCI). Facial
expression plays an important role in affective computing. Emotion
can show the cognitive activity and psychopathology of a person.
Surface electromyography (sEMG) can be recorded from motions
of facial muscles, which can indicate the change in emotional state
under internal and external stimuli (Jiang, Rahmani, Westerlund,
Liljeberg, & Tenhunen, 2015). Except for sEMG signals, other
approaches are mostly based on computer vision (Chen, Yang, &
Wang, 2015). Facial sEMG-based methods outperform methods
that are based on computer vision in many aspects, as discussed
below.

Ekman, Friesen, and Ellsworth (1972) proposed six basic emo-
tions: anger, disgust, fear, happiness, sadness, and surprise. In a
previous study, the accuracy of facial expression recognition was
improved significantly in a single-emotion problem. However,
emotion theory indicates that common facial expressions are mix-
tures of basic emotions (Plutchik, 1980). Hence, the degree of all
basic emotions should be calculated. Label distribution learning
(LDL) is suitable for facial expression distribution to match the fact
that one facial expression is a mixture of different intensities of
basic emotions (Geng, Yin, & Zhou, 2013). LDL, first proposed by
Geng, Yin, and Zhou (2013), can address the importance of multiple
labels. LDL has been applied to age estimation, head pose estima-
tion, and other fields using computer vision (Geng, 2016). Emotion
distribution learning (EDL), which is an LDL algorithm, performs
more efficiently with the idea of the limited-memory quasi-
Newton method L-BFGS than the standard LDL (Geng, Yin, &
Zhou, 2013). A local low-rank structure is proposed to capture cor-
relations of the local label on facial emotion distribution learning,
and experiments demonstrate that the method can better deal
with distribution recognition (Jia, Zheng, Li, Zhang, & Li, 2019).

Many single-label learning methods have been proposed
and applied to facial expression recognition. Most methods for
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expression recognition are based on computer vision, such as
images or videos. The support vector machine (SVM) (Song, Liu,
& Wang, 2013) and hidden Markov model (Wang & Lien, 2009)
were adopted to recognize a single basic emotion, and a high
recognition rate was obtained. Computer vision-based methods
are easy and inexpensive and can achieve acceptable results. How-
ever, the results of the recognition rate depend on the light level,
camera resolution, and other external factors. Moreover, real facial
expressions can be hidden or masked under certain circumstances,
and the recognition result may be unaccompanied by the real
result.

In HCI, physiological signals play an important role as sources of
information in the reaction of human beings (Santamaria-
Granados, Munoz-Organero, Ramirez-Gonzalez, Abdulhay, &
Arunkumar, 2018). Physiological signals include electromyogra-
phy, electroencephalogram, and galvanic skin response (Dey,
Ashour, Mohamed, & Nguyen, 2019). sEMG has been widely
applied in gesture recognition, sign language recognition, and
motion recognition of upper limbs (Du, Lin, Shyu, & Chen, 2010;
Pancholi & Joshi, 2019). Moreover, sEMG has been found to be use-
ful for facial expression recognition (Kehri, Ingle, Patil, & Awale,
2019). sEMG can truly reflect neuromuscular activities, which are
controlled by the autonomic nervous system (Becker, von
Werder, Lassek, & Disselhorst-Klug, 2019). Schmidt and Cohn
(2001) found that a smile is related to the activation of the zygo-
maticus major muscle in 95 individuals. Hamedi, Salleh, and
Swee (2011) applied the sEMG of frontalis and right and left tem-
poralis to recognize a smile, smile with right/left side, and anger,
and they obtained a recognition rate of 80.4% by SVM. Chen,
Yang, and Wang (2015) achieved a recognition rate of up to
95.56% on the basis of the sEMG of eyebrow expression. sEMG-
based methods have advantages compared with computer vision
methods. Without imposing limits on the external environment,
sEMG-based methods are not only unaffected by head movements
but also provide nonvisual and unbiased information (Chowdhury,
Reaz, Ali, Bakar, Chellappan, & Chang, 2013; Mesa, Rubio, Tubia, De
No, & Diaz, 2014). Principal component analysis (PCA) with
Karhunen-Loeve transform has been used in signal and image pro-
cessing and applied to recognize upper limb motions on the basis
of sEMG (Veer & Vig, 2018). PCA can not only overcome the limita-
tion of dimensionality (Loconsole, Cascarano, Brunetti, Trotta,
Losavio, & Bevilacqua, 2019) but can also identify the most repre-
sentative features for classification.

Facial expressions, which are mixtures of basic emotions, have
not yet been explored on the basis of physiological signals in pre-
vious studies. Therefore, our study aims to obtain the most repre-
sentative features and the best distribution prediction algorithm
for an emotion simultaneously on the basis of sEMG. To that end,
four electrodes were placed on the depressor supercilii, zygomati-
cus major, frontalis medial, and depressor anguli oris muscles of
the subjects. For each channel, six features were extracted in the
frequency, time, time–frequency, and entropy domains from each
sEMG signal, and PCA was applied to select the most representative
features for the prediction. Then, EDL was applied to the predicted
distribution with the intensities of basic emotions for an expres-
sion. Our experiment with 12 subjects showed that EDL with
PCA-selected features has a more accurate distribution prediction
than other multilabel learning (MLL) algorithms.
Fig. 1. Locations of sEMG sensors.
2. Materials

2.1. Participants

Twelve subjects (eight males and four females: age, 24–26
years; height, 155–180 cm; weight 40–75 kg) participated in the
experiment. All subjects were healthy and had no family history
of facial neuromuscular and nervous disorders. They provided
written informed consent approved by an institutional review
board.

2.2. Expressions and the muscles

Each subject wore sensors on four facial muscles (depressor
supercilii, zygomaticus major, frontalis medial, and depressor
anguli oris). The muscles were tightly related to six basic emotions
(Edmonds, Couture, Paloheimo, & Rigor, 1988). We recorded the
sEMG signals by TrignoTM Wireless EMG (Delsys Inc, Natick, MA,
USA) with a sampling rate of 1000 Hz. The left and right faces were
assumed to be symmetrical. Thus, one side of the face was selected
as the recorded point. The locations of the sensors are shown in
Fig. 1.

2.3. Experimental procedure

The experiment was divided into three steps: preparation, task,
and statistics. In the preparation step, all subjects were required to
keep their faces clean and smooth to reduce interference from
other noises. We introduced the procedures and the equipment
to the subjects. We conducted a simple tutorial for the subjects.
When we showed pictures that can trigger mood change, the sub-
jects showed facial expressions.

In the task step, 10 different pictures that trigger different facial
expressions from the Radboud Faces Database were prepared as a
set (Langner, Dotsch, Bijlstra, Wigboldus, Hawk, & Van
Knippenberg, 2010). As previously stated, the common facial
expressions are mixtures of six basic emotions: anger, disgust, fear,
happiness, sadness, and surprise. At the end of each expression, the
subjects were required to make a real-time self-assessment, which
involved scoring each basic emotion. The sequence of photos was
random, and each photo appeared 10 times. Each picture was
shown for 4 s, each emotion lasted for 2 s, and the sampling fre-
quency of the equipment was set as 1000 Hz. Subjects were asked
to rest for 10 min after finishing five emotions to avoid muscle fati-
gue. This experiment was repeated the next day. Fig. 2 shows the
emotion and emotion distribution.

In the last step, statistics from the subjects were recorded. The
records of expressions from each subject reacting to each picture
were normalized.

2.4. Data normalization

The dataset was randomly divided into two subsets: a training
set, which contained 70% of the data, and a test set, which con-
tained the remaining data. We took 10-fold cross validation for
the training set. As the sEMG signals were recorded from four



Fig. 3. The contribution rate of the first seven principal components.

Fig. 2. Emotion and emotion distribution.
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channels, the data were normalized within each channel using the
following formula:

NDðiÞ ¼ AmpðiÞDðiÞ þ OffðiÞ; ð1Þ
where ND ið Þ denotes the ith normalized sEMG and D ið Þ represents
the ith raw sEMG.

Amp ið Þ and Off ið Þ are the amplitude and offset of the ith channel,
respectively, as follows:

Amp ið Þ ¼ xk � xl

Max ið Þ �Min ið Þ ; ð2Þ

OffðiÞ ¼ xk � AmpðiÞMaxðiÞ; ð3Þ
where Max ið Þ and Min ið Þ are the maximum and minimum values of
the ith channel, respectively. xk and xl denote the upper and the
lower limits for values of the ith channel, respectively.

3. Method

3.1. Feature extraction

sEMG features were computed with 2 s epochs. Six features
were extracted in the time, frequency, time–frequency, and
entropy domains, which present the characterization of the signal
in different aspects (Sun, Ovsjanikov, & Guibas, 2009).

Six different features were selected for comparison: Wilson
amplitude (WAMP), fuzzy entropy (FE), energy of wavelet packet
coefficient (EWP), autoregressive coefficient (AR), mean power fre-
quency (MPF), and mean frequency (MF), as shown in Table 1.
These features were proven to be effective (Xi, Tang, & Luo, 2018).

The vector space of all the considered features has a total of 13
dimensions. The PCA approach was applied to select the most rep-
resentative of the principal components. It was decided to consider
the most significant components that account for at least 90% of
the variance in data, and thus the first 7 components out of 13 have
been included in Fig. 3.
Table 1
Feature extractions.

ID Feature Dimension Domain

1 WAMP 1 Time domain
2 AR 3 Time domain
3 MF 1 Frequency domain
4 MPF 1 Frequency domain
5 EWP 6 Time-frequency domain
6 FE 1 Entropy domain
3.2. EDL

EDL is a new machine learning paradigm. Traditional single-
label learning and multilabel learning can be regarded as
special cases of the paradigm (Geng, Yin, & Zhou, 2013). EDL uses
description degree dy

x 2 ½0;1� to present the relation between basic
emotion y and expression x. The higher the number is, the
higher the intensity of basic emotion y. The description degrees
of all basic emotions add up to 1. The description degree is similar
to the probability distribution. Therefore, we call it emotional
distribution.

For a training set T ¼ fðx1;M1Þ; ðx2;M2Þ; :::; ðxn;MnÞg, xi 2 X pre-
sents an emotion instance, andMi ¼ fdy1

xi
; dy2

xi
; :::; dyc

xi
g is the distribu-

tion of the sample emotion xi and label value y. dy
xi
is represented

by the form of conditional probability. The goal of EDL is to learn
functions dy

xi
¼ pðyjxiÞ for a training set T , where xi 2 X; y 2 Y .

pðyjxiÞ is assumed to be a parametric model pðyjxi; hÞ, where h is
a parameter vector.

Kullback-Leibler divergence was used to measure the distance

between distributions Mj
a and Mj

b, defined as follows:

DJ MajjMbð Þ ¼
X
j

Mj
a �Mj

b

� �
log

Mj
a

Mj
b

; ð4Þ



Table 2
Measures.

Measures Equation

Distance measures KL-div; dist1ðP;QÞ ¼Pc
j¼1Pjln

Pj
Qj

Euclidean; dist2ðP;QÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPc

j¼1ðPj � QjÞ2
q

Sorensen;
dist3ðP;QÞ ¼

Pc

j ¼ 1
Pj�Qjj jPc

j ¼ 1
PjþQjj j

Squared v2 ;
dist4ðP;QÞ ¼Pc

j¼1
Pj�Qjð Þ2
PjþQj

Similarity measures Fidelity" sim1 P;Qð Þ ¼Pc
j¼1

ffiffiffiffiffiffiffiffiffiffi
PjQj

p
Intersection" sim2 P;Qð Þ ¼Pc

j¼1min Pj;Qj
� �
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where Mj
a and Mj

b are the jth elements of distributions Ma and Mb,
respectively. jj indicates that the relationship of the two distribu-
tions is balanced. It also means DJ MajjMbð Þ ¼ DJ MbjjMað Þ.

Eq. (4) only considers the same basic emotion of two distribu-
tions; thus, the sum of distances between the same superscripts
of Ma and Mb are calculated. The relationship between different
basic emotions should be considered. Different basic emotions
are closely related to muscular activity. Some basic emotions, such
as happiness and disgust, cannot appear simultaneously. Thus,
weighted Jeffrey’s divergence is proposed using the relationship
between basic emotions.

DwJ MajjMbð Þ ¼
X
j;k

wjk Mj
a �Mj

b

� �
log

Mj
a

Mj
b

; ð5Þ

where wjk is the weight between the jth basic emotion and the kth
basic emotion of the distribution, which can be calculated as
follows:

wjk ¼
1
Kj

qjk

� �g
qjk

��� ���P e

0 other

8<
: ; ð6Þ

where qjk ¼
P

i
d
yj
xi
�d
�yj
xi

� �
d
yk
xi

�d
�yk
xi

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
d
yj
xi
�d
�yj
xi

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
d
yk
xi

�d
�yk
xi

� �2
r is the correlation coeffi-

cient between the jth basic emotion and the kth basic emotion
and Kj ¼

P
kðqjkÞgpresents the normalization factor, which can

ensure
P

kxjk ¼ 1. g can control the correlation coefficient, which
is a positive odd number. e is a threshold. If the value of the corre-
lation coefficient is smaller than the value of e, the two basic emo-
tions have no relationship. The best values of g and e are set as 5
and 0.25, respectively (Geng, Yin, & Zhou, 2013). This was also con-
firmed by our experiment.

Finally, the target function h� is defined as follows:

h� ¼ argmin
h

X
i

DxJ MijjM̂i

� �
� n1

1
n

X
k

k hk � h
�
k
2

2

þ 1
2
n2
X
k;r

h2kr ¼ arg min
h

X
i;j;k

xij dyj
xi
� p ykjxi; hð Þ

� �

� lndyj
xi
� lnp ykjxi; hð Þ

� �
� n1

1
n

X
k

k hk � h
�
k
2

2 þ
1
2
n2
X
k;r

h2kr; ð7Þ

where Mi is the distribution of the ith sample and M̂i is the pre-
dicted distribution of the ith sample by using pðyjxi; hÞ. The second
item is a regularized item used to emphasize the important emo-
tions. The third term is another regularized item for preventing
unstable output. n1 and n2 are balance factors. n1 and n2 for EDL
are set as 0.0002 and 0.002 (Geng, Yin, & Zhou, 2013).

Assuming that pðyjxi; hÞ is a maximum entropy model,

p ykjxi; hð Þ ¼ 1
Zi
exp

X
r

hkrxri

 !
; ð8Þ

where Zi ¼
P

kexp
P

rhkrx
r
i

� �
is the normalizing factor, xri is the rth

feature of xi, and hkr is the element of the row k column r in param-
eter h. The target function of h is TðhÞ.

T hð Þ ¼
X
i

Zi þ
X
i;j;k

xjk

1
Zi
exp

P
r
hkrxri

� 	
P
r
hkrxri � lnZi � lndyj

xi

� 	
� dyj

xi

P
r
hkrxri

2
6664

3
7775

� n1
1
n

X
k

k hk � h
�
k
2

2 þ
1
2
n2
X
k;r

h2kr ;

ð9Þ
The limited-memory quasi-Newton method L-BFGS is used in
the minimization of function TðhÞ to increase computing efficiency.
The computation of L-BFGS is related to the first-order gradient of
TðhÞ, which can be achieved by

@T hð Þ
@hkr

¼
X
i;j;k

xjk pikx
k
i 1� pikð Þ

X
r

hkrxri � lnZi � lndyj
xi
þ 1

 !" #

�
X
i

xri 1� pikð Þ � n1
1
n

hkr � h
�
r

� �
� 1

c

X
k

ðhkr � h
�
rÞ

" #

þ n2
X
k;r

hkr ; ð10Þ
wherepik ¼
1
Zi
exp

X
r

hkrxri

 !
:

4. Experiment

PCA was adopted to select the most representative features
in this study. The different features were applied to five
different prediction algorithms to demonstrate the effectiveness
of the PCA-selected features. EDL is a prediction algorithm.
The other distribution prediction algorithms are algorithm
adaptation k-nearest neighbor (AA-KNN), problem transformation
Bayes (PT-Bayes), problem transformation support vector machine
(PT-SVM), and algorithm adaptation backpropagation algorithm
(AABP). The basic idea of PT-Bayes and PT-SVM algorithms is to
transform the label distribution into an MLL. Moreover, AA-KNN
and AABP algorithms, which are natural extensions, are adopted
to address label distribution (Geng, 2016). In this manner, we
can find the best distribution prediction algorithm. In EDL, param-
eters g, e, n1, and n2 are set as 5, 0.25, 0.0002, and 0.002, respec-
tively. For each compared algorithm, several parameters must be
set to obtain the best performance. In AA-KNN, k is set to 6. In
PT-SVM, a linear kernel is used. The number of hidden-layer neu-
rons is 50 in the AABP. For all datasets, tenfold cross validation is
performed in each algorithm.
4.1. Measurement

The evaluation indices are divided into distance and similarity
measures, which are used to evaluate the distance or similarity
degree between distributions. The first four measures are distance
measures, and the last two measures are similarity measures
Table 2. In distance measures, the values of indices are lowered
with the enhanced effect of the algorithm. By contrast, as the val-
ues of the indices of similarity measures increase, the prediction of
the algorithm improves.



Fig. 4. Results of distribution prediction for emotion in EDL. (a) Comparison of real and predicted distributions by using different features in EDL; (b) values of different
measurements using different features in EDL.
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4.2. Components selection

PCA was used to select the most representative components as
inputs to the distribution prediction algorithms. All results were
measured and compared in the experiment. Fig. 4 shows the pre-
dicted distributions by different features in EDL and the results
of the evaluation index. The indices of distance measures are
low, and the indices of similarity measures are high for the PCA-
selected features under the same indicators. In Figs. 5–8, the exper-
imental results show that the PCA-selected components obtain
well-predicted distributions in the MLL prediction algorithms. In
the AABP, the algorithm fails, but the PCA-selected features obtain
the best results in Fig. 8. In general, the PCA-selected components
exhibit the best performance on five different prediction
algorithms.

4.3. Results of predicted distribution

To verify the effectiveness of the EDL algorithm, the four other
MLL algorithms were used for the comparison.

Figs. 9–14 show the comparison results of EDL with four MLL
algorithms. EDL performs best on all measures. Figs. 9–14 present
six different representative emotions (a, the comparison of real and
predicted distributions by using different algorithms; b, the values
Fig. 5. Results of distribution prediction for emotion in AA-KNN. (a) Comparison of rea
different measurements using different features in AA-KNN.
of different measurements for different features by using various
algorithms). Each of the six typical emotions represents a different
meaning with different intensities of basic emotions. EDL can not
only match further complex cases, but can also perform better than
the other four MLL algorithms due to the computation of the inten-
sities of the basic emotions. Happiness and disgust cannot appear
with the same intensities in real distributions. EDL accurately pre-
dicts the distribution and shows the relationship between different
basic emotions. The results show that AABP performs worst in all
tests. Table 3 also indicates that the rankings of the five algorithms
on six measures are almost consistent. Based on six different distri-
butions, the five algorithms can be ranked as EDL � PT-SVM � PT-
Bayes > AA-kNN > AABP.

5. Discussion and conclusion

Results. Figs. 4–14, show some typical examples that demon-
strate the superiority of EDL. In Fig. 4, the value of the description
degree of disgust is the highest, and the other description degrees
are low. However, in single-emotion learning and MLL, disgust may
be the only effective expression with an information loss of all five
other emotions. In Fig. 14, the value of happiness is consistent with
surprise but significantly higher than that of the others. MLL may
lose useful information about the intensities of the relevant
l and predicted distributions by using different features in AA-KNN; (b) values of



(a)                             (b)

Fig. 6. Results of distribution prediction for the emotion in PT-Bayes. (a) Comparison of real and predicted distributions by using different features in PT-Bayes; (b) values of
different measurements using different features in PT-Bayes.

Fig. 7. Results of distribution prediction for the emotion in PT-SVM. (a) Comparison of real and predicted distributions by using different features in PT-SVM; (b) values of
different measurements using different features in PT-SVM.

Fig. 8. Results of distribution prediction for emotion in AABP. (a) Comparison of real and predicted distributions using different features in AABP; (b) values of different
measurements using different features in AABP.
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Fig. 9. Results of distribution prediction for test 1 (the intensity of disgust is the highest). (a) Comparison of real and predicted distributions by using different algorithms; (b)
values of different measurements using different algorithms.

Fig. 10. Results of distribution prediction for test 2 (the intensity of fear is the highest). (a) Comparison of real and predicted distributions by using different algorithms; (b)
values of different measurements using different algorithms.
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emotions, and single-emotion learning cannot deal with the
problem. Therefore, EDL is an appropriate method for predicting
the distribution.

In Figs. 4–8, PCA is an efficient method for obtaining a transfor-
mation matrix to select improved features. The data decrease from
high-dimensional to low-dimensional space, and similar features
are merged for the variance. With reduced data, the number of fea-
tures decreases, which is beneficial in preventing the occurrence of
overfitting. In Figs. 9–14, EDL achieves the best performance on the
basis of the six different measures compared with MLL. The reason
is that EDL directly minimizes the distance and enlarges the simi-
larity between the real and predicted distributions. PT-Bays and
PT-SVM obtain relatively good performance. The ideas of PT-Bays
and PT-SVM are appropriate for the datasets, which are the Gaus-
sian assumption for PT-Bayes and decomposed distribution by
weighted resampling for PT-SVM. Additionally, keeping the label-
ing structure of each example of AA-KNN is inappropriate for the
datasets. AABP performs worst due to overfitting because it needs
additional examples with several parameters to learn.
Compared to the related work listed in Table 4, our proposed
framework revealed at least two comparative merits.

1) Compared with images (Zhou, Xue, & Geng, 2015), we find
that the predicted distributions are more similar to real dis-
tributions. Simultaneously, standardized data databases are
more persuasive for showing the performance of recognition
methods (Jia, Zheng, Li, Zhang, & Li, 2019). The performance
of the proposed method using sEMG is not worse than that
of the methods using images. However, someone tries to
hide real emotion, which leads to misleading results of men-
tal state assessment with exceptional circumstances using
images.

2) Compared with existing related work using biological elec-
trical signals, the proposed method can address the impor-
tance of multiple labels. Current single-label methods have
achieved good results. For example, Mithbavkar and Shah
(2019) achieved good accuracy of up to 97% using the EMG
from AUBT, which contains a single person in four diverse



Fig. 11. Results of distribution prediction for test 3 (the intensity of happiness is the highest). (a) Comparison of real and predicted distributions by using different algorithms;
(b) values of different measurements using different algorithms.

Fig. 12. Results of distribution prediction for test 4 (the intensity of sadness is the highest). (a) Comparison of real and predicted distributions by using different algorithms;
(b) values of different measurements using different algorithms.

Fig. 13. Results of distribution prediction for test 5 (the intensity of surprise is the highest). (a) Comparison of real and predicted distributions by using different algorithms;
(b) values of different measurements using different algorithms.
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Table 3
The result of predicted distributions using different algorithms.

Emotions Prediction
Algorithms

Measures

kldist euclideandist sorensendist squaredxdist fidelity intersection

test 1 EDL 0.003 0.039 0.034 0.003 0.999 0.965
AA-KNN 0.188 0.290 0.251 0.169 0.955 0.748
PT-Bayes 0.079 0.197 0.174 0.076 0.999 0.837
PT-SVM 0.037 0.135 0.131 0.037 0.990 0.868
AABP 0.102 0.222 0.525 0.096 0.975 0.804

test 2 EDL 0.042 0.112 0.131 0.042 0.989 0.868
AA-KNN 0.261 0.293 0.314 0.226 0.940 0.685
PT-Bayes 0.046 0.122 0.133 0.047 0.988 0.867
PT-SVM 0.034 0.101 0.115 0.034 0.991 0.885
AABP 0.167 1.228 2.430 0.601 0.813 0.685

test 3 EDL 0.027 0.079 0.079 0.025 0.994 0.921
AA-KNN 0.103 0.150 0.160 0.092 0.976 0.840
PT-Bayes 0.033 0.132 0.112 0.033 0.992 0.888
PT-SVM 0.069 0.125 0.128 0.058 0.985 0.872
AABP 0.211 1.162 2.698 0.379 0.780 0.616

test 4 EDL 0.060 0.145 0.139 0.058 0.985 0.861
AA-KNN 0.339 0.364 0.333 0.304 0.918 0.667
PT-Bayes 0.038 0.112 0.118 0.037 0.991 0.882
PT-SVM 0.141 0.195 0.208 0.124 0.968 0.792
AABP 0.356 1.376 2.313 1.475 0.513 0.518

test 5 EDL 0.049 0.125 0.119 0.046 0.988 0.881
AA-KNN 0.078 0.151 0.165 0.076 0.981 0.835
PT-Bayes 0.058 0.129 0.142 0.057 0.986 0.858
PT-SVM 0.091 0.161 0.177 0.084 0.978 0.823
AABP 0.234 1.056 2.125 0.489 0.761 0.672

test 6 LDL 0.013 0.059 0.063 0.013 0.999 0.947
AA-KNN 0.167 0.224 0.247 0.164 0.958 0.753
PT-Bayes 0.021 0.086 0.084 0.021 0.995 0.916
PT-SVM 0.018 0.072 0.078 0.017 0.996 0.922
AABP 0.134 0.350 0.526 0.196 0.913 0.755

The bold values indicate the best performance.

Fig. 14. Results of distribution prediction for test 6 (the intensities of disgust and surprise are close and high). (a) Comparison of real and predicted distributions by using
different algorithms; (b) values of different measurements using different algorithms.
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expressive states, namely, angry, joy, pleasure, and sad,
under musical circumstances. EEG is also applied to emotion
recognition (Chen, Zhang, Mao, Huang, Jiang, & Zhang, 2019),
and the accuracy is up to 85.57%. However, bioelectricity
databases are not suitable for distribution studies.

In this study, the facial sEMG-based method was proposed to
predict the intensities of all basic emotions in an expression. The
six features were extracted in different domains (frequency, time,
time–frequency, and entropy domains), and PCA was applied to
select the most representative features. The objective of this study
was to predict the distribution with the intensities of the basic
emotions. Simultaneously, Jeffrey’s divergence considered the rela-
tionship between different basic emotions. The effectiveness of
EDL with the PCA-selected features was verified experimentally.
In addition, the performances of EDL and other MLL models were
compared on the basis of the PCA-selected features. The results
show that the predicted results of EDL are better than those of



Table 4
List of some typical related work.

Article Signal Label Method Databases Recognition

Zhou, Xue, and Geng (2015) Image Distribution EDL s-JAFFE Kldist 0.0957; Euclideandist 0.1002;
Sorensendist0.0339; Squaredxdist0.034;
Fidelity 0.8998; Intersection 0.9914

BU 3DFE Kldist 0.1055; Euclideandist 0.1061;
Sorensendist0.0402; Squaredxdist0.04;
Fidelity 0.8939; Intersection 0.9898

Jia, Zheng, Li, Zhang, and Li (2019) Image Distribution EDL-LRL s-JAFFE Kldist 0.0806; Euclideandist 0.3008;
Sorensendist0.6134; Squaredxdist0.0361;
Fidelity 0.966; Intersection 0.897

BU 3DFE Kldist 0.0951; Euclideandist 0.3556;
Sorensendist0.7463; Squaredxdist0.0694;
Fidelity 0.9626; Intersection 0.8686

Jain, Shamsolmoali, and Sehdev
(2019)

Image Single-label Extended DNN JAFFE Accuracy 95.23%

Renda, Barsacchi, and Bechini (2019) Image Single-label Emsemble
CNNs

FER2013 The best strategies
the Preprocessing Strategy and Pretraining
Strategy, accuracy above 72%

Zangeneh, Rahmati, and
Mohsenzadeh (2020)

Image Single-label DCNNs Training dataset:FERET
Evaluation datasets:LFW,
MBGC,and FERET

Accuracy:
FERET(6 � 6) 81.4%;
FERET(12 � 12) 92.1%;
FERET(24 � 24) 96.7%.
LFW(8 � 8):76.3%
MBGC(12 � 12) 68.64%

Mithbavkar and Shah (2019) EMG Single-label NARX AUBT Accuracy 91% to 97%
Chen, Zhang, Mao, Huang, Jiang, and

Zhang (2019)
EEG Single-label deep CNN DEAP Accuracy up to 85.57%

Our Work sEMG Distribution EDL Obtained by
the experiment

Kldist 0.0323; Euclideandist 0.0932;
Sorensendist0.0942; Squaredxdist0.0312;
Fidelity 0.9923; Intersection 0.9072
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other methods. HCI has good prospects in the future. Thus, our
future work will be devoted to developing a wearable device that
can understand the mentality of people.
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